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SUMMARY 

Viscoelastic flows remain a demanding class of problems for approximate analysis, particularly at increasing 
Weissenberg numbers. Part of the difficulty stems from the convective behavior and in the treatment of the 
stress field as a primary unknown. This latter aspect has led to the use of higher-order piecewise 
approximations for the stress approximation spaces in recent finite element research. The computational 
complexity of the discretized problem is increased significantly by this approach but at present it appears the 
most viable technique for solving these problems. Motivated by recent success in treating mixed systems and 
convective problems, we formulate here a least squares finite element method for the viscoelastic flow 
problem. Numerical experiments are conducted to test the method and examine its strengths and limita- 
tions. Some difficulties and open issues are identified through the numerical experiments. We consider the 
use of high degree elements (p refinement) to improve performance and accuracy. 
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INTRODUCTION 

The numerical simulation of viscoelastic flows is an important and challenging research topic that 
has met with limited success during the past two decades. In particular, as the Weissenberg 
number for a viscoelastic flow problem increases beyond the so-called 'critical' value, most 
numerical schemes breakdown (e.g. see References 1-6). Clear evidence indicating significant 
numerical inaccuracy for simulation of flow of second-order fluids at relatively low Weissenberg 
numbers has been provided by Mendelson et aL7 More recently, Keuning' carried out extensive 
mesh refinement studies to investigate the nature of the problem and sensitivity to the mesh 
resolution. His results suggest that limit points which are associated with the degradation of the 
numerical schemes are numerical artifacts, since the limit points decrease significantly as the grid 
is refined. 

Part of the difficulty in approximating these flows stems from the type of the equations. The 
theoretical analyses of Joseph et a/.9 and Dupret and Marchal' describe the underlying 
hyperbolicity and change of type inherent in the viscoelastic flow equations. As the Weissenberg 
number is increased, the convective terms in the constitutive equations play a more dominant role 
and the hyperbolicity increases. It is well known that standard Galerkin finite element methods 
lead to central difference type operators that are not well suited to hyperbolic problems. 
Petrov-Galerkin and similar strategies (e.g. Taylor-Galerkin methods) introduce numerical 
dissipation and have been successfully applied to convective problems. For example, Marchal 
and Crochet' ' have developed a Petrov-Galerkin finite element scheme employing a streamline 
upwind formulation for viscoelastic flows. 
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Using a Petrov-Galerkin or similar strategy does not suffice in itself to produce a convergent 
method at moderate and high Weissenberg numbers. Recent work has also emphasized the need 
to have consistent approximation spaces for the respective velocity and stress variables. That is, in 
the spirit of the consistency theory for velocity and pressure approximations in mixed 
Navier-Stokes formulations, similar concepts are required here.'**' Accordingly, Marchal and 
Crochet' use different discretizations for the piecewise polynomial spaces: for example, each 
biquadratic velocity element is subdivided into a uniform subgrid to produce the discretization 
for the piecewise bilinear stresses. Their best results are obtained using a 4 x 4 submesh and this 
technique permits computation to high Weissenberg number. It also corroborates the previous 
statement regarding limit points. 

The major detraction to this procedure, however, is the increased computational complexity 
necessitated by the added discretization for the stresses. Viscoelastic flows generally require fine 
graded meshes and this restriction for the stress discretization exacerbates the problem. If 
a similar requirement was made in three dimensions-and this is not yet known-then the 
practical value of the method would be limited. 

For these reasons, alternative computationally less intensive methods that could address this 
class of problems would be of great significance and value. Least-squares finite element tech- 
niques are particularly appealing for several reasons: first, they lead to symmetric discrete systems 
and are better suited to problems with change of type; secondly, for convective problems they 
have been shown to be equivalent to Petrov-Galerkin type variational statements; finally, and of 
greatest importance in the present context, recent studies with mixed systems indicate that the 
consistency conditions on the approximation spaces can be re1a~ed. l~-  l6 This last point suggests 
that a finer discretization for stresses might not be necessary in a least-squares formulation and 
has motivated the present study. Since high degree (high p) finite element methods are less 
sensitive to the consistency issue and offer accurate approximation on coarse grids, we also 
consider their applicability. 

BASIC EQUATIONS 

Although the least-squares approach is quite general, for clarity of exposition we will concentrate 
on the flow of a steady upper-convected Maxwell fluid. This is also a common test case (although 
physically other models might be preferred). The constitutive equation for an upper-convected 
Maxwell fluid is defined by 

rij + lQij=2qoDij ,  (1) 
where 

and 

for velocity ui, viscosity qo and relaxation time l. 

(u, u )  and pressure p are the momentum equations 
The equations governing the steady flow of a two-dimensional Maxwell fluid with velocity 
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and continuity equation 

au aU 
ax ay - + - = O .  

The stress components satisfy the system of equations 

( ;;) ( azxx a L )  au au 
ax ay a y  ax 

av av 
TYY( ;;) ( aTyy ax a T y y )  ay ax ay 

au av 
ax aY xy ay ax 

z,, 1-2We- +We u-+v- -2We7,,--2-=0, 

1-2We- +We u-+v- -2Wez,,--2-=0, 

- Wezx,-- a0 Wez,,-+ au We ( u-+v- ;; 8;;) +Z - - - -=o ,  

(7) 

(9) 

Here Re = pUL/qo and We = I U / L  are the Reynolds and Weissenberg numbers, respectively, 
for given velocity and length scales U and L. Equations (4)-(9) together with the associated 
boundary conditions complete the classical mathematical statement of the problem. 

LEAST SQUARES FINITE ELEMENT METHOD 

For any admissible 'trial' functions, u, v, p ,  zXx, zYy and zXy satisfying the boundary conditions, we 
may define residuals r i ,  i =  1,2,. . . 6 for the governing equations (4)-(9). A corresponding 
least-squares functional may then be defined as 

where r l ,  r 2 ,  . . . , r6 are obtained by substitution of the admissible trial functions in the respective 
governing equations on domain R. 

Taking variations with respect to u, v, p ,  zXx, T,, and zXy, the stationary condition 61 = 0 implies 

1 r j h j  dx dy = 0, 

where 

From the general form of (lo), (1 1 )  we see that the stationary condition does yield an equivalent 
variational statement involving the respective residuals of the governing equations and weight 
functions that depend on the derivatives of the residual with respect to the field variables. Hence, 
this is equivalent to a complicated form of Petrov-Galerkin method. (For a related discussion of 
a simpler class of problems see, e.g. Carey and Jiang") 

Introducing finite element expansions 
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into the weak statement (lo), (11) and setting Su=&(x,y) ,  . . . , 6 t , , = ~ ~ ( x , y )  leads to a non- 
linear discrete system of algebraic equations to be solved. In the numerical results shown later we 
use the same basis for all field variables. 

This system can be solved iteratively using various methods. In the present studies we have 
considered both successive approximation and Newton iteration in conjunction with incremental 
continuation in the Weissenberg number. For example, in the successive approximation scheme, 
the residuals for iterate n are linearized using the previous iterate (iterate n- 1) as 

aun a v n  

ax ay  r ;=-+-- ,  

Then, the variations with respect to new iterate values are 
6rl = Re( u"- 6u, + 21"- 614,) - Sp,  - 6( z,,), - 6( T, , )~,  

6 ~ i  = Re(u"- do,+ on- 6v,)- Spy - S ( t , y ) x - 8 ( ~ y y ) y ,  

Sr; =dux + 6u,, 

a r t= (  - 2 Wet:; - 2) 6u, + We( u'- 6( t,,), + v"-' S( tXx),) - 2 Wet:; ' du, + Sz,, 
Sr; =( - 2  wet;;  - 2)  Su, + We(un-'6( tYy), + un- 6( T~,),) - 2 Wet:;'6uX + ST,,, 
Srz = - Wet:; dux - We?;;' Su, + We( un-'6( t,,), + 0"- 8 ( ~ , ~ ) ~ )  + at,,- 6u,- Su,, (14) 

Using this iterative linearization in (lo), (1 l), the element matrix contributions to the system for 
where Su, . . . , 8tXy are the basis functions indicated previously. 

nodal vector Uf = (u ,  u, z,,, . . . z,,, p ) ,  can be written in the compact form 

K -  (15) = 
1 4 x  + Bn- 1 4, + C4);f (An- 1 4 x  + B n -  1 4 y  + C4)e dx dy, 

where n is the iterate, e is the element index, and the same basis { 4 i )  has been taken for all field 
variables. The matrices in (15) are 

0 - 1 0 0  O '1 0 -1 0 
Re u 

0 0  
1 0 0 0 

- 2 We t,, - 2 0 Weu 0 
A n - l =  

-2Wet, ,  0 
-Wet , ,  0 Weu 
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- 
0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 1 0 0 0  
0 0 0 0 1 0 '  
0 0 0 1 0 0  
0 0 0 0 0 0  - 

947 

Re v 0 0 - 1 0 0  
0 Re v 0 0 - 1 1  
0 1 0 0  0 0  

0 -2WetYy-2  0 0 Wev 0 I - We.cyy - 1 0 0 Weu 0 0 

- 2 We zXy 0 Wev 0 0 0  B,-l= i n - 1  

Let us denote this system as 

g( U) = 0. (18) 

Jdu,= - g n ,  (19) 

Then the iteration is: given starting iterate Uo, for n =0,1,2, . . . compute 

where J, is the Jacobian matrix at U,, g,=g(U,) and 6U,=U,+1-U,. The performance of 
Newton iteration was superior in the numerical experiments, so results with this method alone are 
discussed in the next section. 

Remarks 

Since we are interested in simplifying the treatment of the stresses, the following results all 
involve the same choice of basis functions and discretization for all variables. It is easy to verify 
that the Jacobian matrix in (19) is symmetric. 
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NUMERICAL RESULTS 

The first numerical example was the developing flow of an upper convected Maxwell fluid in the 
entrance region of a planar channel. The geometry and boundary conditions are shown in 
Figure 1. Our main purpose was to explore the applicability of the least-squares method with 
equi-interpolation. Accordingly, we began with the simplest choice of Co bilinear elements. The 
problem was solved on a uniform 32 x 8 discretization of bilinear elements at Weissenberg 
number We = 0.5 and produced good results. The calculation was repeated on a coarse uniform 
16 x 4 grid again at We=O5. The coarse grid result was unsatisfactory since mass conservation 
was poorly modeled. Hence, it appears that the problem and formulation are particularly 
sensitive to the grid resolution. There were no apparent problems (such as oscillations, etc.), 
however, in using equi-interpolation of all field variables even with bilinear elements. 

The degree k of the element basis was increased to 9- node biquadratics and the problem again 
solved on the coarse uniform 16 x 4 grid. Note that the identical basis is again used for all 
variables on a single grid. Once again a solution is obtained but now the results are accurate with 
mass well conserved as indicated by the equispaced section plots of u , u , p , ~ ~ , t ~ ~  and z,,, in 
Figure 2 for Weissenberg number We=O5. Here i=O corresponds to the inlet and i = 8  to the 
outlet. Similar section plots for We= 1.2 are shown in Figure 3. These results compare favorably 
with those in Reference 16. The results for flows above We=0*3 were obtained by using 
incremental continuation in We. That is, the solution at We=O3 was used as a starting iterate 
with increments of 0.01 and so on up to the final value of interest. We also remark that the results 
shown for We= 1-2 do not quite correspond to the convergent limit as can be seen from the 
profiles in Figure 3(a). These results indicate that a longer channel would be required to match the 
asymptotic downstream boundary condition for flow at We= 1.2. It is also instructive to compare 
the present results with those available in the literature for this type of problem. For example, 
a polyethylene melt flow is considered in Reference 18 for the same channel geometry using 
a 1 2 x 3  mesh and a collocation finite element method with bi-cubic Hermite polynomials. 
Convergent results were obtained for this formulation up to approximately We= 1.06 for a model 
of a High Density Polyethylene Melt and We=2.69 for a model of a Low Density Polyethylene 
Melt. 

The second example is the stick-slip problem. The domain is of size 64 x 1 with stick-slip point 
at x=4. Upstream, the flow is taken as fully developed. On the axis of symmetry y =  1, we set 
du/dy =O. Figure 4 shows the geometry and boundary conditions for this test problem. There is 
a strong singularity at the stick-slip point so this is a more demanding test. We began solving the 
problem with bilinear elements on a series of graded meshes, but the continuity constraint again 
was poorly satisfied. We then successively increased the degree of the finite element basis 
functions in a p formulation until at p 3 6 we obtained a satisfactory solution. The results shown 
are for a severely graded mesh with p = 7. (The total number of nodes is 1590 and the downstream 
element near the singular point is of size similar to that in Reference 11). Plots oft,, on the wall for 

(0,l) u = 0, symmetry h e  (rZy = 0) (8,l) - - - - - - - - _ _ _  
flow 
v = o  
Re = 1 u = 0, v = 0 

(070) / ////// /// //(8,0) X 

Figure 1 .  Domain and boundary conditions for developing flow test problem 
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Figure 2. Profiles of u, u,p ,  T , , ~ , , ~ , T ~ ~  at equispaced sections xi, i=O,  1,2, . . . 8, for developing flow at We = 0 5  
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Figure 3. Section profiles for developing flow at We= 1.2 
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Geometry and boundary conditions for stick-slip problem 

Figure 4. Domain and boundary conditions for stick-slip test problems 
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Weissenberg numbers equal to 0.6, 1-0 and 1.2 are shown in Figures 5 (a)-(c). The peak stress 
levels are comparable to those reported by Marchal and Crochet” for an Oldroyd-B fluid. We 
remark that Marchal and Crochet specify fully developed flow downstream and we use the results 
of a related one-dimensional problem to obtain an additional upstream stress boundary condi- 
tion (to accommodate the hyperbolicity). In the least-squares treatment, we specify only the fully 
developed velocity profile upstream. The results for flows above We = 005 were obtained by using 
incremental continuation in We. Even the continuation problem is sensitive, and for convergence 
we used small Weissenberg number increments that decreased from 0-01 to 0-001 as We increased. 
Note that We= 1.2 does not correspond to the convergent limit of this problem. However, the 
very small Weissenberg increment (0001) required to get a convergent solution makes further 
computation to higher We inefficient and future work needs to be directed to this issue. 

CONCLUDING REMARKS 

A new least-squares finite element method has been formulated for viscoelastic flows and some 
exploratory numerical experiments conducted. Equal-order bases are used for all six field 
variables (including the stresses) which is a departure from standard practice with the Galerkin 
finite element method. Results on sufficiently fine grids with bilinear elements for a developing 
flow of an upper-convected Maxwell fluid are satisfactory. On a coarser grid, mass conservation is 
not well approximated with bi-hears but biquadratics and higher degree elements still give good 
results. The more difficult stick-slip problems gave rise to the same problems related to mass 
conservation. A high p solution was achieved for a moderate range of Weissenberg numbers. 
There are several open theoretical questions and practical issues (such as the scaling of residuals 
in the least-squares functional, error analysis, high p conditioning, and continuation techniques) 
that warrant further study and are now being ~onsidered.’~.’~ 
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